• Home
  • Research
    • Satellite Remote Sensing
    • Land Surface and Hydrology Modeling
    • Data Assimilation
    • Seasonal Forecast
    • Climate Change
    • AI and Big Data
  • Data
    • Asian Hydrometeorological Simulation (AHS)
    • Asia’s Monthly MODIS Evapotranspiration (AMODET)
    • Asia’s Meteorological Forecast (AMF)
    • Asia Meteorological Projection Under Climate Change Scenarios (AMC)
    • Global Streamflow Simulation (GSS)
    • Thailand Hydrometeorological Seasonal Forecasts (THSF)
    • Thailand Hydrometeorological Simulation (THS)
    • Thailand Streamflow Simulation (TSS)
    • Thailand Hydrological Projection Under Climate Change Scenarios (THC)
    • Regional TWS Simulation at 5 km (RTWS5)
    • Thailand Hydrological Midterm Forecast (THMF)
    • Thailand Ground Data (TGD)
  • News
  • Contact

ALICE-LAB

Skip to content
  • Home
  • Research
    • Satellite Remote Sensing
    • Land Surface and Hydrology Modeling
    • Data Assimilation
    • Seasonal Forecast
    • Climate Change
    • AI and Big Data
  • Data
    • Asian Hydrometeorological Simulation (AHS)
    • Asia’s Monthly MODIS Evapotranspiration (AMODET)
    • Asia’s Meteorological Forecast (AMF)
    • Asia Meteorological Projection Under Climate Change Scenarios (AMC)
    • Global Streamflow Simulation (GSS)
    • Thailand Hydrometeorological Seasonal Forecasts (THSF)
    • Thailand Hydrometeorological Simulation (THS)
    • Thailand Streamflow Simulation (TSS)
    • Thailand Hydrological Projection Under Climate Change Scenarios (THC)
    • Regional TWS Simulation at 5 km (RTWS5)
    • Thailand Hydrological Midterm Forecast (THMF)
    • Thailand Ground Data (TGD)
  • News
  • Contact
ALICE-LAB
  • About
  • Advancing Water Management through Geospatial Technologies: ALICE-LAB Empowers RID Engineers with AI and Remote Sensing Skills
  • AI and Big Data
  • APN Nature-based Solutions (ENG)
  • Artificial Neural Networks (ANN)
  • Asia Meteorological Projection Under Climate Change Scenarios (AMC)
  • Asia’s Meteorological Forecast (AMF)
  • Asia’s Meteorological Forecast (AMF)
  • Asia’s Monthly MODIS Evapotranspiration (AMODET)
  • Asian Hydrometeorological Simulation (AHS)
  • Asian Hydrometeorological Simulation (AHS)
  • Building Climate Resilience in Chiang Rai: Advancing Water Security with Nature-Based Solutions
  • Climate Change
  • Climate Change Projections
  • Contact
  • Convolutional Neural Networks (CNN)
  • Crop Modeling
  • Data
  • Data Assimilation
  • Data Assimilation in Our Lab
  • Flood Risk
  • Flood Risk(TH)
  • Funding News
  • Generative Artificial Intelligence (Gen AI)
  • Global Runoff Data Centre
  • Global Streamflow Simulation (GSS)
  • Harnessing Advanced Technologies to Tackle Peatland Fire Risks in a Changing Climate
  • High-Resolution Soil Moisture Data for Enhanced Regional Monitoring in Asia
  • Home
  • Hydrology Model
  • Improving Thailand Groundwater by Data Assimilation
  • Instruction THSF
  • Introduction on AI, Machine Learning and Deep Learning
  • Introduction on Big Data
  • jobs
  • Join Us
    • Registration
  • Land Surface and Hydrology Modeling
  • Log In
  • Long Short-Term Memory (LSTM) Networks
  • Member Login
    • Password Reset
    • Profile
  • Model-Derived Soil Moisture for Assessing Agricultural Water Management
  • Multispectral Satellites Remote Sensing
  • News
  • Noah-MP Land Surface Model
  • Optimizing land surface model for improved soil moisture estimation: Bridging the gap between simulation and satellite observations
  • PCRaster Global Water Balance (PCR-GLOBWB) Hydrology Model
  • Regional TWS Simulation at 5 km (RTWS5)
  • Registration
  • Reinforcement Learning (RL)
  • Research
  • Satellite Remote Sensing
  • Satellite Soil Moisture
  • Satellite-Based Data-Driven Modeling for Soil Moisture Prediction over Thailand
  • Seasonal Forecast
  • Seasonal Forecasts Explained: The Role of Seasonal Forecasts
  • Soil Moisture Workshop
  • Soil-Moisture News
  • Surface Water and Ocean Topography (SWOT)
  • Terms and Conditions
  • Test
  • TEST
  • Thailand Ground Data (TGD)
  • Thailand Hydrological Midterm Forecast (THMF)
  • Thailand Hydrological Projection Under Climate Change Scenarios (THC)
  • Thailand Hydrometeorological Seasonal Forecasts (THSF)
  • Thailand Hydrometeorological Seasonal Forecasts (THSF)
  • Thailand Hydrometeorological Seasonal Forecasts (THSF)
  • Thailand Hydrometeorological Simulation (THS)
  • Thailand Streamflow Simulation (TSS)
  • Thank You
  • The Community Water Model (CWatM) Hydrology Model
  • The Transformer Model
  • THFS Big Data
  • THFS Big Data (TH)
  • THFS Big Data Workshop2
  • THFS Big Data Workshop2(TH)
  • THFS News (TH)
  • THFS Workshop News
  • THSF – News Workshop2
  • THSF GEE
  • THSF News
  • THSF Python (offline)
  • THSF Register
  • THSF time series
  • Triple Collocation
  • Weather Research and Forecasting – Hydro (WRF-Hydro) Model
  • Weather Research and Forecasting – Hydro (WRF-Hydro) Model
  • What is Data Assimilation
  • Workshop APN Nature-based Solutions (ENG)
  • Workshop APN Nature-based Solutions (TH)
  • Workshop Evaluation of Nature-based Solutions (ENG)
  • Workshop Evaluation of Nature-based Solutions (TH)
Description
Background
Specification
Description

Our lab has developed a 1 km resolution streamflow simulation for all of Thailand, aimed at improving water resource management, agricultural planning, and climate applications. This simulation offers detailed, high-resolution data for even the most remote, ungauged areas where traditional measurements are not available, providing a comprehensive and current view of streamflow patterns nationwide. Continuous updates make it an invaluable resource for managing water resources, forecasting agricultural needs, and evaluating climate impacts. This readily accessible information supports better decision-making, assists with flood warnings, and enhances overall resource management. By making high-quality hydrometeorological data available, our approach ensures more precise and timely responses to environmental challenges at both local and national levels.



GIF Image

 

Figure 1: A high-resolution, detailed view of streamflow dynamics across Thailand, illustrating how flow patterns evolve over time with exceptional clarity. The 1 km resolution captures fine-scale variations in streamflow that are often missed in coarser-resolution models, offering significant benefits for precise water resource management, accurate flood risk assessment, and targeted agricultural planning. By revealing intricate flow details, this animation enhances the ability to make informed decisions and respond effectively to changes in hydrological conditions.

Background

High-resolution streamflow data is essential for understanding and managing water resources effectively. It gives a clear and detailed view of how water flow changes across different areas and over time. This detailed information helps in managing water supplies, assessing flood risks, and planning agricultural activities more accurately. It allows for precise predictions and timely actions by revealing local patterns and changes that might be missed with coarser detailed data.


Our development of a 1 km resolution streamflow simulation for Thailand represents a significant advancement in this context. While many studies offer high-resolution data, they are often confined to specific projects, limited to certain basins, or are discontinuous and not publicly accessible. In contrast, our nationwide dataset provides continuous, high-resolution coverage across the entire country, offering a comprehensive and up-to-date view of streamflow patterns. This broad and consistent availability fills a critical gap left by existing data sources, democratizing access to detailed hydrometeorological information. By offering a complete picture of streamflow dynamics at a national level, our data supports more effective and informed decision-making for water resource management, flood risk mitigation, and agricultural planning, making it a valuable and novel resource for stakeholders across Thailand.

Specification

Spatial Resolution: 1 km (~0.008333 degree)
Temporal Resolution: 1 day and 1 month
Time span: 2000 – Present
File format: NetCDF
Latency: 1 month

 

VARIABLES

StreamflowRiver Streamflowm³/s

 

TALK TO US
Have any questions? We are always open to talk about your inquiries, new projects, creative opportunities and how we can help you.
CONTACT US
Copyright © 2024 ALICE-LAB: Asian Land Information for Climate and Environmental Research Laboratory. All rights reserved.
 

Loading Comments...